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Jhis study was conducted in order to evaluate available linking techniques
for forming large item pools and to make recommendations as to which techniqu
should be used under various circumstances. Variables of interest included
calibration model and procedure, sample size, overlap level, and linking
procedure. The calibration models considered were the one- and three- para-
meter logistic models. The calibration procedures that were considered in-
cluded the MAX calibration program for the one-parameter logistic (1PL)
model, and the LOGIST and ANCILLES calibration programs for the three-para-
meter logistic (3PL) model. Sample sizes of 100, 300, 500, 1000, and 2000
were used with overlap levels of 5, 15, and 25 items. The linking proce-
dures investigated included major axis linking, least squares linking,

least squares with outlier deletion, and maximum likelihood linking. The
basic design of the study was to sample short tests from a longer test in
such a way that each short test selected had a predetermined number of items
in common with the test just previously sampled. For each short test res-
ponse data were obtained for a subset of the large number of examinees for
which response data from the longer test were available. The short tests
were then calibrated and linked using the linking methods selected for the
study. The resulting parameter estimates were then compared to the esti-
mates obtained from a calibration of the full sample for the longer test,
which served as the criteria by which the linking procedures were evaluated.
Response data used for this study were for a sample of 4000 examinees from
an administration of the Iowa Tests of Educational Development during the
1975-1976 school year. From the results of the analyses performed on these
data the following conclusions were reached. For the best results an over-
lap of 15 items appeared to be best. At the 15 item overlap level a sample
size of 2000 appeared to be necessary for stable linking of the 3PL model
parameters, although when LOGIST was used 1000 seemed to be a sufficient
sample size for linking item discrimination estimates. For the 3PL model the
LOGIST program appeared to yield the best overall results. With a sample
size of 2000 all of the linking procedures yielded adequate results. For

the 1PL procedure a sample size of 100 to 300 appeared to yield adequate
results.
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A Comparison of Procedures For Constructing Large Item Pools

The application of testing methodology is often aided by the develop-
ment of large item pools. For example, traditional test construction is
facilitated by the presence of large item pools from which items can be
selected. Moreover, if the item analysis information available for all
of the items in the pool is on the same metric, comparisons can be made
between the technical quality of the items. Although traditional test
construction is facilitated by the availability of such pools, the newer
testing methodologies of computer assisted test construction and tailored
testing almost require such pools. The recent truth-in-testing legisla-
tion in New York State has also increased interest in the formation of
large item pools with item calibration information on the same metric so
that high quality tests can be produced every year, despite the require-
ment that each test be made public after its use. It is the purpose of
this report to review and evaluate the techniques for forming large item
pools and to make recommendations as to which technique should be used
under various circumstances.

Logically, one can conceive of several procedures for calibrating
large item pools. The simplest of these is to produce a test the size
of the desired item pool and administer this test to a large sample of
individuals. The large sample is required so that stable estimates of
the many item parameters can be obtained. Although this procedure can
be used in some situations, it is often impossible to get the large
sample size and long testing time needed to administer such tests. Also,
if it is desirable to increase the size of the item pool at some later
date, this procedure would require that an even longer test be produced
and administered,

A modification of this procedure which solves some of these prob-
lems is to make up a number of distinct, shorter tests and administer
these tests to the same group over a number of testing sessions. This
procedure removes the requirement of a single long testing session, but
adds problems concerning examinee attrition and possible changes in the
ability of the sample over the series of testing sessions.

A second alternative to the single long testing session is to ad-
minister several short tests to a number of comparable samples. These
samples could be obtained by randomly sampling from the same population,
or by matching examinees in each sample. This procedure also removes
the requirement for a single long testing session, but in turn adds
problems in matching or in obtaining equivalent random samples from the
same population. Thus, although each of these procedures could be used
to proauce a large item pool, each has disadvantages that make it imprac-
tical for most situations.

Another alternative to the three procedures listed above has the capa-
bility of solving most of the practical problems. This procedure involves
administering a number of short tests to separate groups of individuals,
with the requirement that each of the tests have items in common with at
least one of the other tests administered. The item parameter estimates
obtained on these common items are used to determine transformations that
can be used to place all parameter estimates on the same scale. This pro-
cedure has the advantages of using short tests and easily obtained samples

|



-- no matching or random sampling is required. However, it is crucial

with this procedure that accurate item parameter transformations be ob-
tained. An evaluation of the procedures for obtaining these transfor-

mations is the main topic of this report.

The methodology for obtaining item pools using this last procedure
has been given a special label because of its common usage. The technique
for putting the item parameters on the same scale is called linking be-
cause the sets of common items between tests are called calibration links.
For this paper linking is defined as a technique, based upon items that
are in common between tests, used to put item parameter estimates obtained
from different samples on the same scale of measurement.

A distinction must be made here between item parameter linking and
vertical equating. Although the transformations obtained for vertical
equating are somewhat similar to those obtained for linking, the purpose
of the two procedures are different. Whereas linking attempts to place
ali of the item parameter estimates on the same scale, vertical equating
attempts to put ability estimates from tests of different difficulty on
the same scale. The result of this different orientation is a difference
in the desired precision of the various estimates. Linking requires
precise item parameter estimates, while vertical equating requires pre-
cise ability parameter estimates. It is interesting to note that verti-
cal equating has Tong been a concern of the educational community, but
that linking has only recently become of interest.

The specific problem to be addressed by this report is how to best
link item calibrations to form large item pools. Although linking is
conceptually simple, requiring only the development of a transformation
based on the common items to get the item parameter estimates on the
same scale, numerous variables affect the quality of the linking. Fur-
thermore, the optimal combination of values for these variables has not
been determined. The variables identified as being of interest for this
report include: (a) the item analysis model, (b) the linking procedure,
(cg the item calibration program, (d) the sample size required for stable
linking, and (e) the number of common items required. These variables
were manipulated in the research reported here to determine their effect
on linking accuracy and on the drift of item parameter estimates from
their expected values when tests are repeatedly linked. Before reporting
the present study a discussion of the available item analysis modeis and
linking procedures will be presented.

Item Calibration Models

In theory, parameter estimates obtained using any item calibration
procedure can be linked to form item pools with parameter estimates on
the same scale. This holds for traditional item parameters, such as
proportion correct (item difficulty) and item-test correlation (item
discrimination), as well as for the more recently developed item para-
meters from latent trait theory. As long as the same ordinal arrange-
ment of item parameter estimate magnitudes is maintained across adminis-
trations of a set of common items, the parameter estimates can be put on
the same scale.

et e v v e et et e e e dmea o ey gl e —

Rl e e

el e et




-3-

Suppose, for example, we wished to link the difficulty parameter esti-
mates obtained from a traditional item analysis. Two 100 item tests could
be produced so that fifty items were in common, and the two tests could then
be administered to different groups. In order to emphasize that the char-
acteristics of the groups are unimportant, suppose that the mean scores for
the two groups differ by two standard deviations. In order to perform the
linking, a transformation must be determined that will convert the one set
of parameters onto the same scale as the others. Figure 1 shows a plot of
the proportion of correct responses to the 50 common items obtained from
two simulated groups of examinees. The range of difficulty values for the
items for the higher ability groups ranged from .35 to 1.00, while the range
for the lTower ability group for the same items was .19 to .87. Note that
despite the difference in difficulty of the 50 items for the two groups the
plot still fell relatively close to a straight line and the correlation be-
tween the parameter estimates was .89. A regression equation was easily
determined to predict the low ability group's difficulty values (LG) from
those of the high ability group (HG), yielding LG=.87 x HG + .37. Thus
the low ability group's difficulty parameters for all of the 100 items in
their test could easily be converted to the high ability group's scale
using this equation. However, from Figure 1 it is apparent that some
curvilinearity exists in the relationship of the two sets of estimates.
This curvilinearity can become a serious problem ,

FIGURE 1
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Although the linking of the traditional proportion correct could be per-
formed fairly easily for these two tests, the linking may be more difficult
in other situations. For example, if the difference in the ability of the
two groups used to calibrate the tests is more extreme, say four standard
deviations apart, the relationship between the two sets of parameter esti-
mates is clearly curvilinear and finding an appropriate transformation is
more difficult. A plot of the proportions correct for the common items on
two 100-item tests for this situation is presented in Figure 2 to demon-
strate this effect. The regression equation for these data is LG=.70 x
HG - .36, but its inaccuracy is clearly seen from the straight regression
line on the curvilinear scatter plot.

FIGURE 2
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It is not surprising that the relationship between the proportions
correct for the items would be curvilinear in this case. The p-values
are restricted to the range of 0 to 1, while the difference in ability
of two groups can be quite extreme. The relationship must "bend" to fit
into the finite range alloted to both sets of parameters.

Plots of the discrimination values -- point biserial correlations --
corresponding to the data shown in Figures 1 and 2 are presented in Figures
3 and 4. From these figures it can be seen that there is a low negative
correlation between the point biserial correlations, and in Figure 3 the
relationship appears to be curvilinear. The curvilinearity of the rela-
tionships and the low negative correlations would make 1inking of point
biserial correlations quite difficult.
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FIGURE 3
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In recent years, alternatives to the traditional item analysis tech-

niques have been developed that are based upon probabilistic models of the

interaction of a person with an item, These models, called latent trait
or item response theory (IRT) models, do not restrict the possible range
of the item parameters and therefore will often yield linear relation-
ships between sets of parameter estimates when traditional item statis-
tics do not. To demonstrate this fact, the plots of the IRT difficulty
parameter and discrimination parameter estimates for the two groups dif-
fering by four standard deviations are shown in Figures 5 and 6, respec-
tively. Note that the curvilinearity present in Figures 2 and 3 is not
present when this alternative model is used. Because of the convenience
brought about by this linearity, the evaluation of linking techniques
reported here will concentrate on those techniques used with two of the
more commonly applied IRT models. These two models are described below.

FIGURE S
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One-parameter logistic model

The one-parameter logistic (1PL) IRT model was intfally developed by
Rasch (1960). The model is given by the equation

Pluy;) eyt - 5y
U:.) = ’
1+ elbj - 85)

where u.. is the score obtained by Person j on Item i, P(uij) is the proba-

1J

bility of the item score, b1 is the difficult' parameter for Item i, and
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FIGURE 6
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uj is the ability parameter for Person j. This model assumes a unidi-

mensional latent trait or, equivalently, local independence. It also
assumes no guessing and equal discrimination for all items., 41though
these assumptions are not reasonable for many tests (i.e., multiple-
choice achievement tests), the model has been used with some success

for a ..ber of applications (Rentz and Bashaw, 1977; Ireland, 1976;
Woodcock, 1972).

Since the estimation of the parameters of the IRT models requires
lengthy and sophisticated statistical procedures, parameter estimation
is usually performed through the use of a computer program. The quality
of the parameter estimates is therefore dependent on the program used
for estimation. Thus, in order to fully describe the procedure, the
program used for parameter estimation must be discussed in addition to
the model. For the analyses described in this report the parameter
astimates for the 1PL model were obtained using a modified version of
the MAX program developed by Wright and Panchapakesan (1969).

Three-parameter logistic model

The three-parameter logistic (3PL) IRT model was developed by
Birnbaum (1968) as a more mathematically tractable substitute for the
normal ogive model (Lord, 1952). The model is given by the equation
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Pu.. = 1) = c, + (1 - Ci) s
1+ eDai(bi - UJ)

where uij’ P(uij)’ b;, and Uj are as defined above, D is the constant
1.7, used to increase the similarity of the logistic function to the
normal ogive function, c. is the lower asymptote of the item charac-
teristic curve for the item (pseudo-guessing level), and a; is the
discrimination parameter of the item. This model also assumes a uni-
dimensional latent trait or, equivalently, local independence. This
model has been used for numerous testing applications by the Educational
Testing Services (Marco, 1977).

For the analyses described in this report, two different calibra-
tion programs were used to obtain parameter estimates for the 3PL model.
These were the LOGIST program mentioned above, and the ANCILLES prog-
ram developed by Urry (Croll and Urry, 1978). The ANCILLES program
differs from LOGIST in that it uses a combination of minimum chi-square
and ancillary estimation procedures instead of maximum 1ikelihood.

Since these techniques yield somewhat different parameter estimates, it
was felt to be important that both be used to evaluate the linking pro-
cedures.

Linking Procedures

Several procedures for linking calibrations have been iden*ified
in the literature, and several other procedures have been developed
on this project. They include: (a) the major axis method, (b) the
least squares method, (c) the least squares method with outlier dele-
tion, (d) the maximum 1ikelihood method, and {e) the ICC equating
method. The first four of these procedures are based on the item
difficulty parameter scale, while the last procedure is based on the
ability scale. The first four procedures were used in this study, while
the fifth was not. The four procedures used in this study will be des-
cribed first. Then the last procedure, the ICC equating method, will
be discussed as a possible alternative to the procedures currently in
use. It was not used in this study because it was not available at
the time this study was conducted.

Major Axis Method

The major axis method transforms the parameter scales for the items
from the various tests using equations that correspond to the equations
for the major axes of the ellipses of the scatter plots formed by the
parameter estimates from two administrations of a set of items. When
the 1PL model difficulty parameter estimates are being linked, the fol-
lowing procedure is followed. First, the mean difficulty parameter
estimate, b, , for the linking base test, the test used to define the
parameter s§a1e, is computed for the items in common between the base
test and the test to be linked. Next, the mean difficulty parameter
estimate for the tests to be linked, S' is computed for the common
items. The linking constant used to dEtermine the linking transfor-
mation is then computed by
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-b. (1)

This constant is then added to all of the difficulty parameter estimates
for the items on the test to be linked to give transformed parameter
estimates. That is,

»

bLi = bLi + k, (2)

where bLi is the untransformed difficulty parameter estimate for Item i of

the test to be Tinked and b i is the transformed estimate. The transfor-
med values are then combineh with the base test values for the common
items using a weighted averaging procedure given by

Ngbgq + Ny by

Ng + N,

where N, and N, are the sample sizes of the base test and test to be
linked, respeckive]y. This last step is performed in an attempt to inc-
rease the precision of the parameter estimates as more test results are
obtained. Note that the parameter estimates for the common items are
based on the combined samples, while the remaining items are based on
the samples for their respective tests.

The major axis linking procedure for the 3PL model (Marco, 1977) is
somewhat more complicated, partly because of the added parameters and
partly because fewer assumptions are made regarding the relationship be-
tween the parameter estimates from different tests. When the 1PL model
was used the assumption was made that, although the points selected as
the origin might be different for different tests, the parameter estimates
for different tests had the same unit of measurement. That assumption
is not made when the 3PL model is used. Therefore, linking with the 3PL
model must include an equating of the unit, as well as the origin. The
first step, then, is to compute both the mean and the standard deviation
of the difficulty parameter estimates of the common items for the base
test, b, and SpR* and the test to be linked, EL and s,,. To transform
the dif?iculty garameter estimates of the test-to be ?aned to the scale
of the base test, the following equation is used:

S
N (4)

To transform the discrimination parameter estimates, the following equa-
tion is used:

. S
S, (5)

The guessing parameter estimates do not have to be transformed since the
two sets of guessing parameter estimates are already on the same scale.
The transformed difficulty and discrimination values for the common items
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are then combined with the base test values using the same weighted
averaging procedure used for the 1PL model.

Least Squares Method

An assumption that is implicit in the major axis method is that two
sets of estimates for the same items have a correlation of 1.0. That
is, the major axis method assumes that the true parameters of the common
items are obtained from the calibration of both tests, and that the para-
meter estimates from the two calibrations are different only in scale.
The least squares method, on the other hand, assumes that the parameter
estimates contain error that needs to be controlled. That is, the as-
sumption is made that the correlation between the two sets of estimates
for the common items is less than 1.0, and that a regression procedure
is needed to minimize the error introduced into the estimates of the re-
maining items during transformation. The first step in the least squares
linking method is the computation of the slope and intercept of the re-
gression equation predicting the base test difficulty parameter values
for the common items from the difficulty values of the common items from
the test to be linked. The difficulty parameter estimates of the test
to be linked are then transformed to the base test scale using the re-
gressiaon equation. That is,

by = By * Bab g (6)

Estimates for the common jtems are then combined using the weighted
averaging procedure previously discussed.

To transform the discrimination parameter estimates the means of
the a-values for the common items, a, and a, , are computed. The a-
values of the test to be linked are %hen trahsformed by the equation

. a
a’ = B Cd., . (7)

As with the difficulty values, the a-values for the common items are com-
bined using a weighted averaging procedure. As was the case with the major
axis method, when using the least squares method the guessing parameter
estimates are not transformed.

Least Squares Qutlier Deletion Method

The outlier deletion version of the least squares method was developed
because in small sample calibrations the b-values obtained for the 3PL model
are occasionally well outside the expected range (e.g., b=-32.076). It was
hoped that by deleting these poorly estimated parameters from consideration
in computing the linking equations the overall quality of the linking would
be imProved.

The actual linking procedure for the least squares outlier deletion
method is the same as the least squares method with the exception that any
common items with b-values more than two standard error of estimates away
from the regression line are considered to be not in common. A new regres-
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sion line is computed using the remaining common items. The outlier items
are not deleted from the item pool, but are transformed in the same manner
as the noncommon items.

Maximum Likelihood Method

The maximum likelihood linking method requires the use of the LOGIST
program developed by Wood, Wingersky, and Lord (1976). In order to per-
form linking using this program, the test data for the tests to be linked -
must first be edited into a single matrix, with the columns representing
items and the rows representing examinees. An example involving two seven
item tests with 10 examinees each is shown in Figure 7. In this example
the first 10 examinees took items one, three, four, five, six, nine, and
ten. Examinees 11 through 20 took items one, two, four, six, seven, eight,
and nine. Thus, items one, four, six and nine were in common to the two
tests., Items not included in the test taken by an examinee are coded as
"not reached" for that examinee. The matrix may be extended to include
any number of tests and examinees, limited only by available computer
storage. Once all of the data from the tests to be linked are edited
into this matrix, the LOGIST program is run using the matrix as input,
yielding maximum likelihood estimates for the parameters on all of the
test items, Since there are items in common for all the pairs of tests,

the parameter estimates obtained from the LOGIST program are all on the
same scale,

It is important when performing maximum 1ikelihood linking that items
not included in the test taken by an examinee be coded as "not reached"
for that examinee, rather than as "omitted". The LOGIST program treats
“not reached" items different than actively omitted items. "Not reached"
items are not included in the analysis of the data at all, while omitted
items are assumed to be items for which examinees do not know the answer
but could guess at the chance level. Thus, omitted responses are used
in the estimation of the parameters.

ICC Egquating Method

As was previously stated, this linking procedure is based on the
ability scale rather than the item difficulty scale. The goal of this
procedure is to equate the ICC's for the two sets of estimates to be
linked by adjusting the ability scale. Using the overlapping items, two
ability estimates are computed for each examinee, one for each set of
estimates. Then the regression equation is computed for predicting one
ability estimate, 6; , from the other ability estimate, §,. This regres-
sion equation, given by

51 = by *blaz R
is used to adjust the b-values, much the way the regression equation
for the b-values (Equation 6) was used previously. The a-values are
adjusted using Equation 7.
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Figure 7
Data Matrix for Maximum P
Likelihnod Linking With LOGIST 1
1* 2 3 4* 5 6* 7 8 9+ 10 S

1770 NR I U 1 T W 0 U )

2 1 NR 1 1 1 1 NR NR 0 1 (
3 0 NR 0 1 1 1 NR NR 0 1
4 1 NR 1 1 1 1 NR NR 1 1
5 0 NR 1 1 1 0 NR NR 1 1
6 0 NR 1 1 0 1 NR NR 1 0
7 0 NR 1 0 0 0 NR NR 1 1
8 0 NR 0 1 1 1 NR NR 1 1
9 1 NR 1 1 1 1 NR NR 0 1
10 1 NR 1 1 1 1 NR NR 1 1
11 1 1 NR 1 NR 1 1 1 by NR
12 1 1 NR 1 NR 1 0 0 1 NR
13 1 0 NR 0 NR 0 1 0 0 NR
14 0 0 NR 1 NR 0 0 1 0 NR
15 0 0 NR 1 NR 1 1 1 1 NR
16 1 1 NR 1 NR 1 1 0 0 NR
17 0 1 NR 1 NR 1 1 1 1 NR
18 1 1 NR 1 NR 0 1 1 1 NR
19 1 1 NR 1 NR 1 1 1 1 NR
20 0 0 NR 0 NR 0 0 1 1 NR

* Ttems in common to the two tests.

Method s

Two approaches may be taken to evaluate linking procedures. One
approach involves the use of simulation data, while the other approach
utilizes actual response data. The use of simulation data has the ad-
vantage of allowing the parameter estimates to be compared to the known
values of the parameters used to generate the data. However, simulated
data usually represent an unrealistic simplification of actual test re-
sults, especially in terms of factor structure and examinee variables
such as guessing.

.
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Evaluation of linking procedures using actual data has the advantage
of being realistic, but without the knowledge of the true values of the
parameters a good criterion for judging the adequacy of linking procedures
is lacking. Because true parameter values are not known, the evaluation
of linking procedures using real data involves the comparison of linked
estimates with the estimates obtained from a large sample calibration or,
alternatively, gauging the consistency of results from several analyses.

It is clear from this discussion that neither the use of actual data
nor the use of simulated data yields a completely satisfactory evaluation
technique. Because of this, the approach for the current study was made
on the basis of practical considerations. The time, effort, and resource
required to employ both approaches were prohibitive. Because directly
applicable results were desired, the decision was made to employ actual
test data to evaluate the linking procedures selected for this study.

The basic design of the current study was to sample short tests
from a longer test in such a way that each short test selected had a
predetermined number of items in common with the test just previously
sampied. For each short test response data were obtained for a subset
of the large number of examinees for which response data from the longer
test were available. The short tests were then calibrated and 1inked
using each of the linking methods selected for the study. The resulting
parameter estimates were then compared to the estimates obtained from
a calibration of the full sample for the Tonger test. Thus, the esti-
mates obtained from the large-scale calibration served as the criteria
by which the linking procedures were evaluated.

Calibration Programs

Three calibration programs were used in conjunction with the linking
procedures used in this study. These included a modification of the one-
parameter logistic program (MAX) developed by Wright and Panchapakesan
(1967), the three-parameter logistic program (LOGIST) developed by Wood,
Wingersky, and Lord (1976), and the three-parameter logistic program
(ANCILLES) described by Croll and Urry (1978). The MAX program was selec-
ted since good results had been obtained with this program in the past
(Reckase, 1977). The LOGIST program was selected since it had been used
with success in the past, even though large samples are required for
stable estimation. The ANCILLES program was used in the hope that it

would yield good results with sample sizes smaller than those required by
the LOGIST program.

Data

Criterion_ In order for the design of this study to be successfully
implemented, a large sampie calibration of a long test was required. Also,
since the application of linking procedures to achievement testing was of
interest, a test that was representative of the factor structure of a
typical achievement test was desired. In order to meet these requirements,
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response data for a large sample were obtained for the Iowa Tests of
Educational Development, or ITED (1972). These data were obtained through
Dr. William Coffman, the director of the Iowa Testing Programs.

The ITED is a general achievement measure covering seven subareas:
expression, quantitative thinking, social studies, natural sciences, liter-
ature, vocabulary, and sources of information. Although this test has
seven distinct subtests, a composite score is computed which correlates
highly with other general measures of achievement. Also, it has a very
high internal consistency reliability. A principal components factor
analysis of the test confirmed its multi-dimensionality, but also indi-
cated that the test had a strong first factor.

The ITED has 357 items, a length that made it ideal for this study.
Response data were available for 4,000 examinees, including 1,000 examinees
each from grades 9, 10, 11, and 12. These data were from an administration
of the test during the 1975-1976 school year. The distribution of total
scores on the test was negatively skewed, with a mean of 184,61 and a
standard deviation of 61.51.

Tests In addition to the linking procedures and calibration prog-
rams, variables of interest included sample size requirements and the
number of items in common to two tests. In order to evaluate the ef-
fects of these variables datasets of various sample sizes and varying
numbers of items in common were produced. The data were then calibrated
and analyzed using the calibration and 1inking procedures set out
above.

The procedure used for developing the tests was as follows:

1. A 50 item test, designated Test A, was selected from the 355
jtems available (two items were discarded by the LOGIST prog-
ram due to nonconvergence of parameter estimates) using a
stratified random sampling scheme. The strata used were the
subtests of the ITED.

2. From Test A, n items were randomly selected as common items,
where n was 5, 15, or 25. Then (50-n) new items were selec-
ted from the ITED using the stratified random sampling scheme.
Thus, a new test of 50 items,designated Test B, was developed
so as to have n and only n items in common with Test A

3. :A new test, Test C, was created so as to have n items in com-
mon with Test B using the procedure set out in Step 2. The
overlap of items between Tests A and C was ignored.

4. A fourth test, Test D, was created by the same procedure so
as to have n items in common with Test C. Again, overlap
with Tests A and B was not controlled.

5. For the four tests created for each of the three levels of
overlap, subsamples of the 4,000 examinee population were
selected using a systematic sampling procedure, That is,
every jth case was selected so that samples of 100, 300, 500

)
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1000, and 2000 were obtained. Sampling began with a different
first case for each of the tests so that different examinees

would be included on each of four tests for each sample size.

The 2000 sample tests had substantial overlap of examinees, re-
sulting in interdependence of the tests. Because of this the
results for the 2000 sample tests should be interpreted cautiously.

{
,j The procedure described above resulted in 20 sets of response data (four
i tests for each of five sample sizes) for each level of overlap. Each of
i} these data-sets was calibrated using each of the calibration programs,
o and for each sample size and item overlap Tevel the calibrations of the
i% four tests were linked using each linking procedure.

f Analyses

The Tinked parameter estimates obtained from each of the combina-
tions of sample size, overlap, and method were evaluated in two ways.
First, correlations were obtained between the linked parameter esti-
mates and the estimates obtained for the full 355 item test using all
of the 4,000 examinees. These correlations were then tested to deter-
mine whether they were all estimates of the same correlation using a
procedure set out by Snedecor and Cochran (1980). This test is per-
formed using the following statistic:

k 3 Kk
Xt = I (N 2- (I (N -3)z32 (N - 3),
i=1 i=1 i=1
where k is the number of correlations, N, is the sample size for corre-
lation i, z., is the normal deviate form 3f Correlation i obtained via

Fisher's {o z transformation, and x? is distributed as a chi-square
with (k- 17'degrees of freedom. The usual Fisher's r to z transforma-
tion was used to compare specific pairs of correlations.

The second type of analysis performed was the computation of the
! sum-of-squared-deviations quality of linking index suggested by Wright
(1977) for use with the one-parameter logistic model. This index is
based on the following equality:

where N is the sample size, and n is as previously defined. The value
SBL represents the sum of the squared deviations of the differences be-
1

tween the two sets of estimates around the mean difference, or linking
constant, This statistic was computed for both the one- and three-
; parameter b-values, although its applicability to the three-parameter
‘ model has yet to be determined.

The final type of analysis performed was the construction of scat-
ter plots comparing the linked estimates and large sample estimates
in order to check for non-linearity. When the scatter plots indicated
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that there might be curvilinearity, eta coefficients were computed and
cqmpared to the correlation to determine the seriousness of the devia-
tion from linearity.

Results

One-Parameter Logistic Model

The gor(elations that were obtained between the linked one-para-
meter !og1st1c (1PL) difficulty parameter estimate sets obtained using
the major axis linking method and the difficulty parameter estimates
obtained from the calibration of the full ITED are presented in Table
1. The correlations are shown for the linkage using 5, 15, and 25
overlapping items, and for sample sizes of 100, 300, 500, 1000, and
2000. In addition, the correlations are presented for the linking
results after each successive test was linked to the base test.

The data were analyzed in this way to check for drift in the esti-
mates (Rentz, 1978). In this report drift is defined as signifi-
cant changes in the item parameter estimates as new tests are linked
to an already existing item pool.

Table 1

Correlations of Linked One-Parameter Difficulty Estimates
Obtained Using the Major Axis Method With the Large
Sample Estimates for A1l Sample Sizes and Overlap Levels

5 Item Overlap 15 Item Overlap 25 Item Overlap
Sample
Size AB ABC ABCD AB ABC ABCD AB ABC ABCD
100 .949 .950 .958 .950 .948 .943 .972 .965 .969

300 .980 .981 .984 .981 .982 .983 .986 .985 .988
500 .979 .982 .988 .991 .991 .992 .992 .992 .993
1000 .989 .991 .994 .997 .997 .997 .997 .997 .998
2000 .998 .998 .998 .998 .998 .999 .999 .999 .999

g e e

No. of

Items 99 134 165 85 116 144 75 98 115
x2 211.71** 345.93** 219.70**
df 4 4 4

** p < 005

Note. The x® tests are reported here only for the ABCD sets of linked estimates.
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The magnitude of the correlations in Table 1 indicates that the
major axis linking method used in conjunction with the one-parameter
logistic model works well. Comparisons of the correlations across
sample sizes (summarized in Tabie 2) and overlap levels (shown in
Table 1) yielded predictable results. For all three levels of over-
1ap, the correlations increased 51gn1f1cant1y with increased sample
size (x?=211.71, p<.005 for 5 item overlap, x2=345.93, 005 for
the 15 item over]ap x?=219.70, p<.005 for 25 item over (The
x* test was performed and reported only for the full set of four
linked tests, denoted by ABCD in the table.)

The results showed that for the 1,000 and 2,000 sauple s1zes the
correlations increased s1gn1f1cant1y w1th increaseu overlap (x’=21.42,
gf .005 for the 1,000 sample; x*=11,89, p<,005 for the 2,000 sample s1ze)

or the 300 and 500 sample sizes the changes ir e ccvre13t1ons across
overlap levels were not significant. For the 1) sampie a x?=6.54
(Ef-05§ was obtained, indicating significant dif” -eaces, but the
pattern is unclear. The correlation for the Y3 s0-pie size with 25
items overlapping (r=.969) was higher than tr.e correlation with 15

items overlapping (r=.943) and with five items overlapping (r=.958),
but the 15 item overlap correlation was not hiciar than the Tive item
overlap, as might have been expected. It should be pointed out, however,
that the statistically significant differences reported above may have

Jittle practical importance, since all of the reported correlations
were so close to 1.0,

The next analysis performed on the correlations reported in
Table 1 was a check for drift of estimates during the linking process.
To test for drift correlations obtained for the AB, ABC, and ABCD sets
of estimates were compared. No significant change in the magnitude
of the correlations was found as the number of tests linked together
increased from two to four, as is shown in Table 2, with the exception
of the 1,000 sample size five item overlap level. An examination of
the correlations for this case indicates that the correlations in-
creases as the number of linked tests increased. However, comparisons
of the AB correlation with the ABC correlation and the ABC correla-
tion with the ABCD correlation were not significant. The comparison

of the AB correlation with the ABCD correlation was, of course,
significant.

The final analysis performed on the correlations report in Table
1 was to examine the corresponding scatter plots to determine whether
there were any indications of curvilinearity. No indications of non-
linearitv were found for any sample size or level of overlap.

The results for the sum-of-squared deviations quality of linking
index are reported in Table 3. The values reported in the body of the
table are the x* values correspond1ng to the obtained squared deviations.
In all but three cases, these x? values were significant. In fact,
these values were hlghly significant even for the conditions for which
correlations of ,999 were obtained, and where the standard deviations
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for the parameter estimates was the same. It is clear from these results
that this statistic has little relationship to the quality of the linking
as defined in this study, Because of this finding no further analyses
based on this statistic will be reported,

Table 2
Chi-Square Statistics for the Overlap and Drift Analysis of the
Major Axis Method With the One-Parameter Logistic Model

Samp]e Overlap Drift
Size 5 Item 15 Item 25 Item
100 6.54* .85 .25 5
300 2.13 .94 .19 77
500 5.67 5.98 .40 .33
1000 2] ,42%* 7.06* .00 .00
2000 11 ,89** .00 .00 .00
df 2 3 3 3
*p < .05,
**p < 005,

Note. The results of the overlap analyses are reported only for the ABCD
sets of linked estimates.

Table 3
Quality of Linking Statistic for the
One-Parameter Linking by
Sample Size and Overlap

Sample 5 Item 15 Item 25 Item
Size AB ABC ABCD AB ABC ABCD AB ABC ABCD
100 13.0 170.5 404.7 345,3 143.4 3544 381.2 401.3 867.1
300 8.3* 143.2 214,7 15,9 276,3 303.1 410.6 536.5 710.0
500 18.5 182,0 460.,9 251,6 150.4 362.3 587.4 723.1 797.8
1000 17.5  111,2 597.1 147,7 143.8 271.3 564.7 554.7 811.6
2000 18.8 13.7* 305.3 .2* 132.4 160.2 4811 373.0 492.7
Overlapping items 5 1" 19 15 19 22 25 27 33
x2(.05) 9,49 18,31 28,87 23,68 28.87 33,92 36.42 40.1 55.76
df 1 2 3 1 2 3 1 2 3

*These values were not significant at the .05 level. A1l others indicated a significant
difference from a quality linking.
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Three-Parameter Logistic Model

Due to the numerous procedures used with the three-parameter logis-
tic (3PL) model the results of these analyses are relatively complex.
To facilitate the presentation of the results, they will be presented
for each procedure separately. Only after the specific results for each
of the procedures have been presented will the results of the compari-
sons of the procedures be presented. It should be pointed out that
in the following analyses, which contain multiple comparisons, no
attempt was made to control the experimentwise error rate. The pur-
pose of these analyses is to compare the relative qualities of the
procedures, not judge them in any absolute terms.

Major Axis Method Table 4 contains the correlations between the
large sample estimates and the estimates obtained from the major axis
Tinking procedure for the five item averlap level. The correlations
obtained using both the ANCILLES and LOGIST program are reported,

The same data for the 15 item overlap level are shown in Table 5, while
Table 6 shows the data for the 25 item overlap level. At the bottom

of Tables 4 through 6 are shown the obtained chi-squares from the

tests for significant changes in the correlations across sample sizes.
As can be seen in these tables, the correlations increase significantly
with increased sample size for both the ANCILLES and LOGIST estimates

at all three levels of overlap, with the exception of the LOGIST
c-values for the five item overlap level.

The tests to determine the significance of the changes in the cor-
relations as the number of common items increased are summarized in
Table 7 for both the ANCILLES and LOGIST estimates. For the ANCILLES
estimates the obtained chi-squares were significant only for the a-
and b-values for the 100 and 500 sample sizes. For the 100 sample
size the correlations of the a-and b~ values with the large sample esti- i
mates did not change significantly as overlap increased from five to )
15 items. However, as the overlap increased from 15 to 25 the increase 8
in the correlations was significant. At the 500 sample size, the a- P
value correlation increased significantly only between the 15 and 25 p
jtem overlap levels. The b-value correlation, however, increased :
significantly only between the five and 15 item overlap levels, and
not between the 15 and 25 item overlap levels.

d
The LOGIST estimate correlations changed significantly as the num- 4
ber of common items increased in all cases except the c-values for the i
100, 300, and 500 sample sizes. The pair-wise comparisons of the cor-
relations (five item vs. 15 item and 15 item vs. 25 item) did not re- g
veal any consistent pattern of change as overlap increased. For the s
a-values, the correlations for the 100 and 1,000 sample sizes did not b
Tncrease between the five and 15 item overlap levels, but did increase 3
significantly when the overlap was increased to 25 items. The 300 and :
500 sample a-value correlations significantly decreased as overlap in-
creased from five to 15 items, but increased when overlap increased to
25 items. For the 300 sample size the 25 item overlap a-value corre-
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Table 4

Correlations of Linked Three-Parameter Estimates Obtained
Using the Major Axis Method With Large Sample Estimates
for the 5 Item Overlap Level

ANCILLES LOGIST
Sg?gle Parameter
AB ABC  ABCD AB ABC ABCD
a .306 .347 327 603  .565 .498
100 b .685 .726 755 501  .472 .427
c .382 422  .423 .094 072 .170
a .430 613  .593 727 .72 .749
300 b .865 .887  .902 712 U731 .744
c .623 578 .617 .316  .252 .239
a .757 765 770 692  .786 .743
500 b .906 .924  .935 730 .707 .666
c .697 725 728 314 .237 .244
a .862 .867  .870 .828  .885 .663
1000 b .945 .953  .958 .875  .868 .822
c .838 .838  .810 237 .196 .208
a .898 .915  .906 .896  .933 .907
2000 b .970 .976  .976 992  .991 .987
c .833 .842  .828 .363  .306 .268
ny 88 126 156 99 134 165
a 137.58% 80.58*
x?(4) b 131.54* 411.21*
c 55.85% 1.06
*
p < .005

Note. The row labeled n, indicates the number of items used to compute
the correlations. The ANCILLES program has fewer values because
it automatically deletes poor items,
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Table 5

Correlations of Linked Three-Parameter Estimates Obtained
Using the Major Axis Method With Large Sample Estimates

for the 15 Item Overlap Level

Sample Parameter ANCILLES LOGIST
Size —
AB ABC ABCD AB ABC  ABCD
a .314 330 .421 .600 414 367
100 b .766 788 .772 .762 733 734
c .493 .484 .452 .132 .004 -.017
a .698 .687 .683 .827 511 .533
300 b .937 .924 ,930 .909 .900  .907
c J10  .600  ,566 .549 375 .344
a .664 718 .756 .523 .520  .439
500 b .965  .959  .963 .824 .809  .829
c JJ17 689 742 .381 486 422
a .830 .870 .888 .632 .679  ,630
1000 b L965 .968  .969 .808 .826  .842
c .743 .734 769 .329 .539  .563
a 916 .926 .923 .934 .948  .945
2000 b .969  ,977  .978 .987 .988  ,989
c .763 ,805 .815 531 .676  ,588
n; 82 113 141 85 116 144
2 a 119.29* 181.41*
X b 129, 85* 240.91*
(4) c 42.01* 43.80*
*
p < .005

Note. The row labeled n. indicates the number of items used to compute the
The 'ANCILLES program has fewer values because it
automatically deletes poor items.

correlations.
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Table 6

Correlations of Linked Three-Parameter Estimates Obtained
Using the Major Axis Method With Large Sample Estimates
for the 25 Item Overlap Level

PEPSENRS W

[

; Sg?ﬁ;e Parameter ANCILLES LOGIST
; AB ABC ABCD AB - ABC ABCD
8 a 654 .590  .613 521 .57  .614
s 100 b 774  .818  .870 769 772 .757
r o .193 .310 .453 270 234 .084
g a .763 .791 .746 .849 827 .811
= 300 b .904  ,908  .921 .928 .921 .930
\L c .529 .554 .634 .659  .285 .249
‘ a .822  .850  .861 .801  .827 .854
‘ 500 ) .961 .948 .958 .980 .978 .979
c .539 .553 .638 493 334 .326
a .889 .904 .899 .928 .918 915
1000 b .966  .957  .965 .985  .988 .984
c .626 .647 .698 .605 .378 .325
a .958 .944 .942 .980  .965 972
2000 b .979 971 .978 .996  .996 .996
c .812 .738 .780 .822  .488 473
ny 70 93 109 75 98 115
a 72.18* 124 31*
x(4) b 56.63* 264.99*
c 17.29* 10,92**
*
p  .005
** p<.05
Note. The row labeled n; indicates the number of items used to compute
the correlations. 'The ANCILLES program has fewer values because
it automatically deletes poor items.
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Table 7

Chi-Square Statistics for the Overlap and Drift Analyses of the Major
Axis Method Using the Three-Parameter Logistic Model
Using the ANCILLES and LOGIST Programs

Drift

mle oo rorer Overlap ANCTLLES - TOGTST
ze ANCILLES LOGIST 5 Item 15 Item 25 Item 5 Item 15 Item 25 Item

a 8.97* 6.83* .45 1.06 4 1.46  5.07 .86
00 b 8.37* 25.06** 1,16 .16 4.02 .51 .24 .07

c .15 1.72 .15 .16 3.76 .81 1.29 2.08

a 5.19 19.75%* 3,65 .04 .59 284 22.62%% 63
00 b 2.42 38.93** 1.54 .42 .51 .30 .15 .22

c .83 1.22 .33 3.25  1.32 50 3,78 14 45%x

a 6.57* 41.77%% .05 1.84 .76 2.46 .99 1.30
00 b 6.63*  149.97%* 2.10 41 1.00 1.11 .21 .10

c 2.70 3.02 .24 73 1.7 .46 .86 2.04

a 1.14 50.45%* .06 2.52 .25  26.03** 58 .30
00 b 1.90 123.57*% 1.08 .18 77 3.03 .64 1.24

c 4.31 14.34%* 67 .55 .80 .09  5.04 6.09

a 4.07 25.48%% 53 2000 1.21 3.43 72 3.46
00 b .23 11.81** .79 1.72 1.49 1.86 .44 .00

c 1.17 12.26%* .15 81 1.41 66 2.70  22.23%
£ 2 2 3 3 3 3 3 3
P_<'05
'R<.005

lation was not significantly greater than the five item overlap correla-
tion. But the 500 sample 25 item overlap correlation was significantly
greater than the five item overlap corretlation.

The pattern for the LOGIST b-values was somewhat more consistent than
for the a-values. As sample size increased the change in correlation mag-
nitude tended to occur between the 15 and 25 item overlaps. For the 100
and 300 samples the correlation increased significantly as overlap increased
from five to 15 items, but did not increase significantly as overlap
increased to 25 items. The 500 sample correlation increased both as the
overlap increased from five to 15 items and as the overlap increased from
15 to 25 items. For the 1000 and 2000 samples the correlation did not
increase as overlap increased from five to 15 items, but did increase
significantly as overlap increased from 15 to 25 jtems.
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There were no significant changes in the correlations of the LOGIST
c-values for the 100, 300, and 500 samples. For the 1,000 sample the
correlation increased as overlap increased from five to 15 items, but
decreased as overlap increased to 25 items. The 2,000 sample c-value
correlation increased between the five and 15 item overlap levels, but
did not change significantly as overlap increased to 25 items.

For the ANCILLES estimates no parameter drift was found, as can be
seen in Table 7. For the LOGIST estimates there was some parameter
drift during linking. At the five item overlap level significant dif-
ferences in the a-value correlations were found for the 1,000 sample.
The a-value ABC correlation was not significantly different from the AB
correlation. However, both the AB and ABC correlations were significantly
higher than the ABCD correlation. For the 15 item overlap level the only
significant drift was for the 300 sample a-values. In this case the AB
correlation was significantly higher than both the ABC and ABCD correla-
tions. There was no significant difference between the ABC and ABCD
correlations,  The only drift found for the 25 item overlap level was
for the c-values at the 300, 1000, and 2000 sample sizes. In all three
cases the AB correlation was significantly greater than the ABC and
ABCD correlations, and in none of these cases was there a significant
difference between the ABC and ABCD correlations.

Least Squares Method The correlations of the large sample estimates
with The KNC%[[ES and LOGIST estimates linked using the least squares
method are shown for the five, 15 and 25 item overlap level. in Tables
8, 9, and 10, respectively. At the bottom of these tables are summaries
of the analyses to determine whether the correlations changed signifi-
cantly as sample size increased. As can be seen in the tables, in all
cases except for the LOGIST c-values for the five item overlap level the
correlations increased significantly with increased sample size. This
was true for both the ANCILLES and LOGIST estimates at each overlap
level. The LOGIST c-value correlations for the five item overlap level
did not change significantly with increased sample size, as was the
case with the LOGIST c-values for the five item overlap level when the
major axis method was used.

The analyses to determine whether the correlations for this method
changed significantly as the number of overlapping items increased are
surmarized in Table 11 for both the ANCILLES and LOGIST estimates. The
ANCILLES a-value correlations changed significantly with increased over-
lap for the 300, 500, and 2000 sample sizes, but not for the 100 and
1000 samples. The 300 sample a-value correlation increased significantly
as overlap increased from five to 15 items, but did not change as over-
lap increased from 15 to 25 items. For the 500 sample the increase from
15 to 25 items resulted in a significant increase in the correlation,
but the correlation did not change as overlap went from five to 15 items.
The a-value correlation foe the 2000 sample did not increase significantly
as overlap increased from five to 15 items, nor did it increase from 15
to 25 items. The change in the correlation .was significant only as over-
lap increased from five to 25 items,
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Table 8

Correlations of Linked Three-Parameter Estimates Obtained
Using the Least Squares Metnhod Witn Large Sample

Estimates for the 5 Item {verlap Level

ANCILLES LOGIST
Sample
Size Parameter
AB ABC ABCD AB ABC ABCD
a .558  .486 .490 .630 .668 .707
100 b .589  .574 .543 ,485 .450 .422
c .382  .422 .423 .094 .072 .170
a .250  .463 .465 725 774 779
300 b .860 .872 .893 J19 736 .743
c .623 .578 .617 .316 .252 .239
a .690 .745 .764 .700 .795 .839
500 b .892 .909 .924 731 .704 .656
c .697 725 .728 .314 .237 .244
a .825 .863 .870 .821 .860 .890
1000 b .942 .954 .960 .876 .868 .811
c .838 .838 .810 .237 .196 .208
a .857 .910 .904 .886 .927 .937
2000 b .969  .977 .977 .992 .991 .987
c .833 .842 .828 .363 .306 .268
n; 88 126 156 99 134 165
a 124 ,94* 69.64*
b 232.77* 415.03*
x*(4) c 55,85+ 1.05
*
p < .005
Note. The row .labeled n. indicates the number of items used to compute

the correlations.
it automatically deletes poor items.

The ANCILLES program has fewer values because
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Table 9

Correlations of Linked Three-Parameter Estimates
Obtained Using the Least Squares Method Witn
Large Sample Estimates for the 15 Item Overlap

Level
CILLES IS
Sg?gle Parameter ANCILL LOGIST
AB ABC ABCD AB ABC ABCD
a .394 .369 .419 .589 ,695 713
100 b .709 .672 .670 707 670 .662
c .493 .484 ,452 -.132 .004 -.017
a .678 .682 .676 .859 850 .837
300 b .950 .932 .928 .909 888 .896
c .710 .600 .566 .550 375 344
a .612 .687 726 777 .835 .819
500 b .960 .951 .952 808 .789 .801
c 717 .689 .742 .381 .486 422
a .864 .687 .892 921 925 .922
1000 b .961 .964 .965 796 796 .806
c .743 734 .769 .329 539 .563
a .916 +  .926 .924 .947 957 .954
2000 b .970 .977 .978 .987 .988 .989
c .769 .805 .815 .531 .676 .588
n, 82 113 141 86 116 144
a 123,00+ 85 ,49%**
x2(4) b 167 ,79%** 278 . 84x*x*
_ c 4], 15%** 43, 80%**
1 243
p < .005

Note. The row labeled n; indicates the number of items used to compute
the correlations. "The ANCILLES program has fewer values because
it automatically deletes poor items.
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Tab

le 10

Correlations of Linked Three-Parameter Estimates Obtained

Using the Least Squares Method With Large Sample

Estimates for the 25 ltem Overlap Level

NDNIFAFY TR YA

ANCILLES LOGIST
ngple Parameter
1ze AB ABC ABCD AB ABC ABCD
a .651 .633 .606 J15 U735 731
100 b .813 .861 .861 769  .752 721
¢ .193 .310 .453 270 .234 .084
a .762 .782 744 .896  .887 .870
A 300 b .910 .903 .917 912 .900 .912
X ¢ .529 .554 .634 .659  .285 .249
. a .821 .846 .860 .838  .851 .884
: 500 b .960 .949 .956 .977  .973 .974
) c .539 .553 .638 493 334 .326
a .886 .903 .900 .936  .928 .924
1000 b .967 .958 .965 .986  .989 .986
¢ .626 647 .698 .605  .378 .325
a .959 .954 .950 .982  .965 973
2000 b .979 .971 .977 .996  .996 .997
c .812 .738 .780 .822  .488 .473
n, 70 93 109 75 98 115
a 81.94** 89, 52%*
x%(4) b 57.89%* 298.62%*
¢ 17.28%* 10.94*
p < .05.
** p < .005.

L ¥
———————— .

- —— v

Note. The row Tlabeled n. indicates the number of items used to compute
the correlations. 'The ANCILLES program has fewer values because
it automatically deletes poor items.
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The ANCILLES b-value correlation increased with increased overlap only
for the 500 sample size. The correlation for the 500 sample increased sig-
nificantly as overlap increased from five to 15 items, but not when overlap
increased from 15 to 25 items. The ANCILLES c-value correlation did not
change significantly with increased overlap for any sample size.

The LOGIST a-value correlation increased with increased overlap only
for the 2000 sample. The increase in the 2000 sample a-value correlation
was significant as overlap increased from 15 to 25 items, but not as over-
lap increased from five to 15 items.

The LOGIST b-value correlation increased significantly with increased
overlap for all sample sizes. For the 100 and 300 samples the b-value
correlation increased significantly as the overlap increased from five to
15 items, but not as overlap increased from 15 to 25 items. For the 500
sample the increase was significant as overlap increased from five to 15
items as well as from 15 to 25 items. The LOGIST b-value correlation for
the 1000 and 2000 samples increased significantly between the 15 and 25
item overlap levels, but not as overlap increased from five to 15 items,

The LOGIST c-value correlation changed as overlap increased only for
the 1000 and 2000 samples. The 1000 sample c-value correlation increased
as the overlap increased from five to 15 items, but decreased as the over-
lap increased from 15 to 25 items. The 2,000 sample c-value correlation
increased as overlap increased from five to 15 items but did not change
as overlap increased from 15 to 25 items.

The analyses to detect drift are also summarized in Table 11. As
can be seen, no significant drift was found for the ANCILLES estimates.
Drift in the LOGIST estimates was found for four cases. The first case
was the 500 sample a-value correlation for the five item overlap level.
For this case the correlation did not change significantly when the num-
ber of linked tests increased from two to three, nor when the number of
linked tests went from three to four. However, the correlation for the
two test set was significantly lower than the correlation for the set of
four tests. No cases of drift were detected for the LOGIST estimates for
the 15 item overlap level, but there were three cases of significant drift
for the 25 item overlap level. For the 25 item overlap 300 sample c-
values there was a significant decrease in the correlation when the third
test was linked to the first two. There was no significant change in
correlation when the fourth test was added. The same pattern occurred
for the c-value correlation for the 1000 and 2000 sample sizes.

Least Squares Method With Qutlier Deletion The results for the least
squares method with outTier delTetion were very similar to the results for
the least squares method and therefore will not be discussed in great
detail. The correlations with the large sample estimates obtained for the
estimates yielded by the outlier deletion linking procedure for the five,
15, and 25 item overlap levels are shown in Tables 12 through 14, respec-
tively. (Note that this procedure was used only in conjunction with the
LOGIST program.) The analyses of the effects of increased sample size are
summarized at the bottom of Tables 12 through 14. As can be seen, the
correlations increased with increased sample size in all cases except the

five item overlap c-values, which has been a consistent finding when
the LOGIST c-values have been used.
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Table 11

Chi-Square Statistics for the Overlap and Drift Analyses of the Least
Squares Method with the Three-Parameter Logistic Model
Using the ANCILLES and LOGIST Programs

e ey e P
L conatmtaniind i . NI €L 0 . i L

Drift
g??gle Parameter Overlap
ANCILLES LOGIST
ANCILLES LOGIST 5 Item 15 Item 25 Item 5 Item 15 Item 25 Item
a 3.78 .24 .59 .22 .28 1.03 2.67 .07
. 100 b 30.42**  16.45** 25 .32 1.28 .39 .36 .57
o .15 2.45 .16 .16 3.65 .81 .97 2.14
a 14.81%* 5.82 3.90 .01 .39 .97 .36 .70
300 b 3.16 28.23** 1.30 1.93 31 .18 .58 29
C .82 1.22 .33 3.26 1.29 .50 3.78 14, 31**
a 8.30* 3.89 2.21 2.22 .69 7.39* 1.24 1.73
500 b 6.59* 132.89** 1.83 .54 .69 1.38 .13 .27
c 2.62 3.02 .26 .68 1.32 .46 .86 2.02
a 1.39 3.45 1.48 g7 .33 4.17 .04 .36
1000 b .46 152.82** 1,97 .18 .78 4.23 .05 .98
C 4,40 14.34** 56 .43 .81 .09 5.04 6.06*%
a 7.05% 12.83** 3,54 .21 .42 5.93 .60 4,55
2000 b .08 15.60** 1.46 1.34 1.25 4.83 .44 .00
c 1.16 12.26*%* .17 .74 1.34 .66 2.70 21,71*
df 2 2 3 3 3 3 3 3
*
p<.05
** p<,005
A summary of the overlap analyses for the outlier deletion proce-
dure is shown in Table 15. The a-value correlation with the large sam-
ple estimates increased with increased overlap only for the 300 and 2000
sample sizes. The 300 sample a-value correlation increased significantly
from the five to 25 item overlap levels, but not between the five and
15 item overlap levels nor betweer the 15 and 25 item overlap levels. The
2000 sample a-value correlation increased significantly as overlap inc-
reased from I5 to 25 items, but not as overlap increased from five to 15
items.
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Table 12

Correlations of Linked Three-Parameter Estimates Obtained

Using the Maximum Likelihood Method and the Least Squares

Method With Outlier Deletion With Large Sample Estimates
for the 5 Item Overlap Level

- ————

Sample Maximum Least Squares With Qutlier Deletion
Sige Parameter Likelihood
AB ABC ABCD
a .685 .631 .674 .709
100 b .476 .485 .448 .420
c .139 .094 .072 .170
a .816 125 .769 774
300 b .788 719 .729 .728
c .273 .316 .252 .239
a .826 .700 .795 .838
500 b .665 731 .706 .655
c .206 .314 .237 244
a .907 .821 .873 .903
1000 b .831 .876 .868 .809
c .196 .237 .196 .208
a .948 .886 .926 .936
2000 b .988 .992 .991 .992
c .353 .363 .306 .268
ny 165 99 134 165
a 89.97* 72.40*
x2(4) b 407,17+ 541.71*
c 5.02 1.05

Note. The row labeled n. indicates the number of items used to compute the
correlations.
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_ Table 13 \
! Correlations of Linked Three-Parameter Estimates Obtained }
Using the Maximum Likelihood Method and the Least Squares L
Method With Outlier Deletion With Large Sample L
Estimates for the 15 Item Overlap Level |
Max imum Least Squares With Outlier Deleti E
Sa0P1e parameter Likelihood aua h Qu cerion |
AB ABC ABCD
a 735 .585 .692 71
100 b .673 .693 .633 .633
q c .096 -.132 .004 -.017
j ) a .793 .858 .850 .836
i 300 b .943 .908 .889 .895
c .262 .550 .375 .344
a .811 .778 .835 .818
500 b .923 .809 .786 773
c .269 .381 .486 .422
a .917 .921 .925 .923
1000 b .951 .796 .810 .800
c .400 .329 .539 .563
a .945 .947 .960 .954
2000 b .983 .987 .988 .989
2 c .407 .531 .676 .588
; a 73.16** 86.00** ;
: x2(4) b 180,97** 297.13** :
} c 10.65** 10.65* :
:
~ * p< .08 o
! LR 5
p < .005 v
Note. The row labeled n; indicates the number of items used to compute 3
the correlations.
‘ %
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Table 14

Correlations of Linked Three-Parameter Estimates Obtained

Using the Maximum Likelihood Method and the Least Squares

Method With Outlier Deletion With Large Sample Estimates
for the 25 Item Overlap Level

Maximum . . .
Sg?gle Parameter Likelihood Least Squares With Outlier Deletion
AB ABC ABCD
| a .673 .718 .730 734
100 b .634 .769 .770 .738
c .063 .270 .234 .084
a .857 .896 .887 .870
300 b .940 .908 .913 .923
c .388 .659 .285 .249
‘ a .879 .838 .855 .886
200 b .987 .976 .969 .968
c .296 .493 .334 .326
a .945 .936 .928 .924
1000 b .992 .994 .994 .990
c .407 .605 .378 .325
a 974 .982 .965 .973
2000 b .997 .996 .996 .996
c .445 .822 .488 .473
n, 115 75 98 115
a 118.76** 88.19**
x2(4) b 381.23* 302.55**
c 12.56* 10,94*
*
p < .05
** p < .005

Note. The row labeled n; indicates the number of items used to compute
the correlations.
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The b-value correlation increased significantly with increased over-

lap at alT sample sizes.

The 100 and 300 sample size b-value correlations

increased significantly as overlap increased from five to 15 items, but not

as overlap increased from 15 to 25 items.

in correlation was significant as overlap increased from five to 15 items

as well as from 15 to 25 items.

but not as overlap increased from five to 15 items.

For the 500 sample the increase

The 1000 and 2000 sample b-value correla-
tions increased significantly as overlap increased from 15 to 25 items,

For the c-values the correlation changed significantly with increased

overlap only for the 1000 and 2000 sample sizes.

The 1000 sample correla-

tion increased significantly as overlap increased from five to 15 items and
decreased as overlap increased to 25 items.
relation increased as overlap increased from five to 15 items, but did not
change as overlap increased to 25 items.

Chi-Square Statistics for the Overlap Analyses of the Maximum
Likelihood Method and the Least Squares Method With

Table

15

Qutlier Deletion and the Drift Analyses for the Least
Squares Method with Qutlier Deletion

The 2000 sample c-value cor-

Overlap Drift {Qutlier Deletion)
g?ggle Parameter
Max. Like. Outlier Deletion 5 Item 15 Item 25 Item

a .05 .23 1.28 2.64 .06
100 b 7.26* 17.11%* .39 .58 .38

C .92 2.45 .81 .97 2.17

a 2.55 6.27* .81 .36 .70
300 b 46.91** 36.43** .03 .53 .44

c 2.86 1,22 .50 3.78 14 .45**

a 3.97 4,16 6.97* 1.24 1.74
500 b 199, 17%* 114,75** 1.41 .42 1.08

c 5.57 3.02 .46 .86 2.04

a 5.06 1.48 6.61* .03 .35
1000 b 169.52** 198 .86** 4 .64 .09 4.89

C 16.66%** 14 . 34%* .09 5.04 6.09*

a 11.5]1%* 13,12** 5.75 1.07 4.75
2000 b 24 ,03%* 9.02* .43 .44 .00

c 8.36* 12.26** .66 2.70 21.96%*
df 2 2 3 3 3

*p<,05
**E‘aoos
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A summary of the drift analyses for the outlier deletion method also
appears in Table 15, No significant drift was found for the 15 item over-
lap level, but several instances of drift were found for the five and 25
item overlap levels., For the five item overlap level there was signifi-
cant drift for the a-value correlations for the 500 and 1000 sample sizes.
In both cases there was no significant change in the correlation as the
number of linked tests increased from two to three and from three to four.
The only significant difference was between the AB and ABCD correlations.
For the 25 item overlap level significant drift was found for the c-value
correlation for the 300, 1000, and 2000 sample sizes, In all three cases
the c-value correlation decreased significantly as the third test was
linked, and in none of these three cases did the correlation change when
the fourth test was added.

Maximum Likelihood Method Tables 12 through 14 show the correla-
tions obtained between the Targe sample estimates and the estimates
yielded by the maximum 1ikelihood 1inking method for the five, 15, and
25 item overlap levels, respectively. The summary of the sample size
effect analyses shown at the bottom of these tables indicates that the
correlations increased significantly with increased sample size in all
cases but the five item overlap c-values.

Table 15 shows the results of the overlap analyses for the maximum
1ikelihood method. As can be seen in the table, the results of the over-
lap analyses for this methcd are similar to the results of the overlap
analyses for the least squares method. The a-value correlation increased
as overlap increased only for the 2,000 sampTe size. The 2,000 sample
a-value correlation did not change as overlap increased from five to 15
Ttems, but increased significantly as overlap increased from 15 to 25
items.

The b-value correlation increased with increased overlap at all
sample sizes. At the 100 and 300 sample sizes the b-value correlation
increased as overlap increased from five to 15 items, but not as over-
lap went from 15 to 25 items. For the 500 and 1,000 samples the increase
in correlation was significant as overlap went from five to 15 items as
well as when overlap increased from 15 to 25 items. The increase in
correlation for the 2,000 sample was significant as overlap increased
from 15 to 25 items, but not as overlap went from five to 15 items,

The c-value correlation increased with increased overlap only for
the 1,000 and 2,000 samples. In both cases the c-value correlation in-
creased as overlap increased from five to 15 items, but did not change
significantly as overlap increased from 15 to 25 items.

The maximum likelihood method involves the simultaneous calibra-
tion of the tests to be linked. Therefore, no intermediate estimates
(AB and ABC sets of estimates) are obtained for this linking method.
As a result, there could be no drift analyses for this procedure.

————— - —
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The examination of the scatter plots for the three-parameter cor-
relations indicated some cases for which there appeared to be deviations
from linearity. However, for none of the cases were the eta coefficients
that were computed different from the correlations, indicating that there
were no significant deviations from linearity. This was true for all
sample sizes, all levels of overlap, and for every linking procedure,

Comparison of the Procedures

Table 16 summarizes the correlations obtained using the seven linking
procedures for the five item overlap level. In each row the highest
correlation is underlined, with multiple underlining indicating no sig-
nificant differences among the underlined correlations. The one-parameter
Togistic model results for the five item overlap level are reported in
Table 16, but were not considered when the highest correlations were
underlined. The one-parameter correlations were presented for comparison

purposes. The one-parameter results were presented previously and were
shown in Table 1.

One result that can be seen immediately from Table 16 is that for
the five item overlap level the major axis Tinking method with LOGIST
estimates yielded lower correlations overall than the other procedures.
However, when ANCILLES estimates were used the major axis method yielded
correlations that were in most cases as high or higher than the cor-
relations obtained for the other procedures. In 11 of 15 cases the
correlations for the major axis method using ANCILLES estimates were
underlined, a total which was higher than any of the other procedures
for the five item overlap level.

The next highest total was for the least squares method using
ANCILLES estimates, which had 10 correlations underlined. The remain-
ing procedures, least squares using LOGIST estimates, outlier deletion
using LOGIST estimates, and the maximum likelihood method using LOGIST,
were much the same. When LOGIST estimates were used, the least squares
method had five correlations underlined, as did the maximum 1ikelihood
method. The outlier deletion method had six correlations underlined.

There is a relatively clear pattern evident in Table 16. The cor-
relations obtained using LOGIST estimates with the least squares, out-
lier deletion, and maximum 1ikelihood methods were almost identical.

Only for the 2,000 sample size b-value correlations was there a difference.

The correlation obtained for the outlier deletion method for the 2,000
sample size b-values was the highest of all the methods. With the ex-
ception of the major axis method, it appears that for the five item
overlap level the methods were of about the same quality when LOGIST
estimates were used. It also appears that across the sample sizes the
best results for the a-value linking were obtained using LOGIST esti-
mates. For the 300 and 500 sample sizes the correlations obtained for
the a-values using ANCILLES estimates were as high as those for the
LOGIST estimates, but for the other three sample sizes, the 100, 1000,
and 2000 sample sizes, the correlations were higher when LOGIST esti-
mates were used.
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Table 16

Correlations of Linked Estimates With Large Sample Estimates
For the One- and Three-Parameter linking Procedures for
the 5 Item Overlap Level

3PL Estimates

Sg?g;e Parameter 1PL ANCILLES LOGIST

Major Least Major Least Outlier Max.

Axis Squares Axis  Squares Deletion Like.

a .327 .490 .498 .707 .709 .685

100 b .958 .755 .543 .427 527 320 7%
c 423 .423 .170 .170 .170 .139

a .593 .465 .749 779 774 .816

300 b .984 . 902 .893 T 73 78 788
c 817 617 .239 .239 .239 .273

a .770 764 .743 .339 .838 826

500 b .988 935 5 .666 656 655 065
c 728 728 244 244 .244 .206

a .870 .870 .668 .890 .903 .907

1000 b .994 7958 960 .822  BIT 809 831
c 810 810 .208 .208 .208 .196

a .906 .904 .907 .937 .936 .948

2000 b .998 .976 .977 .987 987 992 988
c .828 .828 .268 .268 268 .353

Note. The largest correlation in each row is underlined for the 3PL progedures.
More than one underlined value per row indicates no significant differ-
ence between the underlined values.

When ANCILLES estimates were used there was little difference be-
tween the major axis and least squares methods. The major axis method
correlation was higher for the 100 sample size b-values, but for all
other sample sizes the correlations were equally high,

Overall, for the five item overlap level it appears that the major
axis method using ANCILLES estimates yields the best results. However,
it is clear that for a-value linking the LOGIST estimates using any of
the procedures except the major axis method are best. For the b-value
linking the ANCILLES estimates with the major axis method yield the best
results except for the 2000 sample size, in which case outlier deletion
with LOGIST estimates appears to be best. For the c-values, which are

not linked, the correlations were markedly higher when the ANCILLES
estimates were used.
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For all sample sizes the b-value co
parameter linking than any of the other

rrelations were higher for the one-
procedures If no estimates are

needed for item discrimination or guessing, the one-parameter linking is

clearly superior to three-parameter 1ink
relations with large sample estimates.

ing when judged in terms of cor-

Table 17 sumnmarizes the correlations obtained from all of the proce-

dures for the 15 item overlap level.

Again, the highest correlations in

each row are underlined, with multiple underlining indicating no signifi-
cant differences among the underlined values.

Table 17

Correlations of Linked Estimates With Large Sample Estimates

For the One- and Three-Parzamete
the 15 Item Over

r Linking Procedures for
lap Level

3PL Estimates

Sample Parameter 1PL

Size ANCILLES LOGIST
Major Least Major teast Outlier Max.
Axis Squares Axis Squares Deletion Like,
a 421 419 367 713 711 .735
100 b 943 772 .670 734 662 .633 673
c .452 452 -.017 017 -.017 J0%6
a .683  .676 .533 .837 .836 .793
300 b .983  .930 .928 .907 896 R 943
c .566 .566 .344 344 .344 . 262
a 756  .726 .439 814 .818 .811
500 b .992 .963 .952 .829 7B01 773 9723
c L7142 .742 422 422 .422 .269
a .888  .892 .630 ,922 .923 .917
1000 b .997 969 .965 .842 7806 800 95T
c .769 .769 .563 .563 .563 .400
a .923 .924 945 954 .954 .945
2000 b .999 .978 .978 2989 989 989 983
c .815 .815 .588 588 588 .407
Note. The largest correlation in each row is underlined for the 3PL procedures.

More than one underlined value per row indicates no significant differ-

ence between the underlined values.
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The pattern of correlations in Table 17 is much like what was ob-
tained for the five item overlap level. One difference that can be seen
is that the correlations in most cases were higher for the smaller sample
sizes than for the five item overlap level, as was indicated by the
overlap analyses previously discussed. For those correlations obtained
using ANCILLES estimates, there were only two other differences. The
correlation obtained for the 100 sample b-values for the 15 item overlap
level using the least squares method with ANCILLES estimates was not sig-
nificantly lower than the major axis method correlation, while it was
Tower than the major axis method correlation for the five item overlap.
The opposite was true for the 500 sample a-value correlation. For the 15
item overlap level 400 ample a-values, the correlation obtained for
the least squares method using ANCILLES estimates was significantly lower
than the major axis method correlation using ANCILLES estimates, while
for the five item overlap the two correlations were not significantly
different.

There were several changes in the correlations obtained for the
procedures using LOGIST estimates when overlap increased from five to
15 items. One change was that for the 15 item overlap level the major
axis method using LOGIST estimates yielded correlations for the 2,000
sample size that were not significantly lower than the correlations for
the other procedures, as was the case for the five item overlap level.
The use of LOGIST estimates with the other procedures still appeared
to be superior to use of the ANCILLES estimates when a-values were
linked, although the ANCILLES estimates gave equally high a-value corre-
lations for the 1,000 sample size and for the 500 sample size when the
major axis method was used. The major axis method using LOGIST esti-
mates was still clearly inferior to the other procedures, and there
were still few differences between the other procedures when LOGIST
estimates were used. There were no differences in the procedures for
the a-values. However, for the b-values the maximum likelihood pro-
cedure was superior to the other procedures using LOGIST estimates for
the 300, 500, and 1,000 samples. For the 2,000 sample b-values the
maximum likelihood procedure yielded a lower correlation than the other
procedures when LOGIST estimates were used. One other interesting result
appears in Table 17. The outlier deletion correlation for the 100
sample b-values is the only correlation that is significantly lower
than the others.

Overall, the results for the 15 item overlap level are not much
different than for the five item overlap level. The major axis method
using ANCILLES estimates yielded higher overall correlations than the
other procedures, although the LOGIST estimates yielded correlations for
the 15 item overlap level that compared more favorably with the corre-
lations for the ANCILLES estimates than was the case with the five item
overlap level. For a-value linking the procedures using LOGIST esti-
mates, with the exception of the major axis method, appeared to be
superior. At all sample sizes except the 2,000 sample size the proce-
dures using ANCILLES estimates appeared to give better overall results
for b-value linking, and in all cases the correlations were higher for
the c-values when ANCILLES estimates were used. Again, c-values were
not Tinked. ’

- ——-




i

Coaees A i

<t oA

-

-39-

Table 18 summarizes the results for the 25 item overlap level. The
results are somewhat different from the results for the five and 15 item
overlap levels. One important result reported in Table 18 is that, with
the exception of the c-values and 100 sample size b-values, the maximum
likelihood procedure "appears to be the procedure of choice. for the a-
and Q;va]ues the maximum 1ikelihood procedure correlations were as high
or higher than the correlations for any procedure for all sample sizes,
except for the 100 sample b-values. For the c-values the ANCILLES esti-

ma%es yielded higher correTations, as they did for the 100 sample b-
values, -

Table 18

Correlations of Linked Estimates With Large Sample Estimates
For the One- and Tnree-Parameter Linking Procedures for
the 25 Item Qverlap Level

3PL Estimates

Sample p. . meter 1pL  ANCILLES LOGIST

Size Major Least Major Least Outlier Max.
Axis  Squares Axis Squares Deletion Like.

a .613 606 .614  .731 .734 .673

100 b .969 .870 .861 757 721 .738 .634

c 453 453 .084 084 .084 .063

a 746 744 811  .870 .870 .857

300 b .988 .921 .917 930 312 .923 940

c 634 634 289 249 249 7388

a .861  .860 .854  .884 .886 .879

500 b .993 958 956 979 372 968 .987

c .638  .638 326 .326 .326 .296

a .899  .900 915 924 .924 945

1000 b .998  .965 .965 .984 7986 .990 992

c .698  .698 .325 325 .325 .07

a .942  .950 972,973 .973 .974

2000 b .999 .978  .977 996 997 .996 .997
c .780 .780 473 473 473 .445

Note. The 1=z~gest correlation in each row is underlined for the 3PL procedures.
More tnan one underlined value per row indicates no significant differ-
ence between the underlined values.

pReRT @RS - [
—— - —— gy ——— - ——

fm— -

PR

BT

Er—

e

FETN

$a, o cd. b e Gl SRR P <

A e W L g _— PR - o r - s




;T

el e Sl

- .y -

gy

-40-

After the maximum likelihood procedure, the next best procedure for
linking b-values appeared to be the outlier deletion procedure, followed
closely by the major axis method using ANCILLES estimates and the least
squares method using ANCILLES estimates. For a-value linking the other
three procedures using LOGIST estimates appeared to be as good as the
maximum likelihood procedure. Unlike the five and 15 item overlap levels,
the major axis method using LOGIST estimates did not appear to be inferior
to the other linking procedures.

At the 25 item overlap level, as was the case with the other overlap
levels, the one-parameter linking of b-values was superior to the three-
parameter procedures, especially for the smaller sample sizes. A sample
size of 500 was required for the three-parameter b-value correlations to
exceed the one-parameter 100 sample size b-value correlation. When
ANCILLES estimates were used the one-parameter 100 sample b-value corre-
lation was not exceeded until the 2,000 sample size.

DISCUSSION

The purpose of this study was to investigate the properties of
various procedures available for linking item parameter estimates for
the one- and three- parameter logistic models. The properties of in-
terest included: (ag the sample size requirements of the procedures;
(b) the overlap requirements of the procedures; (c) the degree of drift
when new tests are linked to an existing pool; and (d) the relative qual-
ity of the procedures. These properties were investigated by obtaining
and analyzing the correlations between the linked item parameter esti-
mates yielded by the linking procedures and item parameter estimates
yielded by a large sample calibration of the items. Before discussing
the results of those analyses, the use of correlations as criteria
for judging the quality of linking will be discussed.

For the 3PL model, the use of correlations as criteria for judging
the quality of the linking of b-values appears to be reasonable. For
the 1PL model a slope of one is also required, Two sets of b-values for
the same items should be linearly related, and any departure from line-
arity that occurs will be reflected in the correlations. Moreover, as
long as the correlation is one, it is not necessary to consider further
conditions, such as the intercept of the regression line. For a- and
c-values, however, not only is it necessary for the correlation to be
one, but the intercept of the regression line must be zero. Therefore,
in the case of a-value and c-value linking, a correlation of one is a
necessary but not sufficient condition. When evaluating linking proce-
dures, then, a high correlation is not enough for concluding that the
linking results are adequate.

Two other considerations must be made when using correlations as
criteria for judging the adequacy of linking. First, the actual concern
in judging the quality of linking is that the resulting ICC be correct,
so all three parameters must be considered together. It is not enough
to have good linking of the estimates of one parameter (unless, of
course, a one-parameter model is being used). Second, it is very dif-
ficult to determine how high a correlation should be in order to judge
the linking to be adequate. Ideally the correlations should be one,
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but in practice correlations of one are rare. In this study, correlations

that were less than .9 were judged inadequate, and for the b-values still

higher correlations were required for a judgement of adequacy.

Keeping in mind the considerations just set out, the results of the

analyses will now be discussed. The results for the major axis procedure

using the 1PL model will be discussed first. Then each procedure using
the 3PL model will be discussed in terms of the sample size requirements
at each overlap level. After discussing the sample size requirements of

the procedures, the relative quality of the procedures will be evaluated.

Also, the results obtained for the ANCILLES and LOGIST estimates will be

compared. Finally, the results obtained using the 1PL and 3PL models
will be compared.

In the discussion of the results of this study the c-values will not

be discussed in any detail. The c-values are simply averaged during
linking, so much of the differences in c-values that occurred were due
to differences in the way the different calibration programs handled the
c-values. For instance, the LOGIST program places rather restrictive
controls on the c-values, and as a result the c-values take on a quite
restricted range of values. The restriction in range resulted in low

correlations that are not truly reflective of the quality of the estimates.

Therefore, comparisons of c-value correlations would not be very meaning-

ful and will not be undertaken.

One-Parameter Logistic Model

Samgle Size

The comparisons of the results obtained for the 1PL model across
sample sizes indicated that for all levels of overlap the correlations
increased significantly with increased sample size. However, even for
the 100 sample size the correlations for the 1PL model were gquite high.
The increase in the correlations with increased sample size was statis-
fically significant, but perhaps of little practical importance. A

sample size of 100 appeared to be sufficient for adequate linking re-
gardless of the level of overlap.

Overiap

For the 1000 and 2000 sample cases the correlations increased sig-
nificantly with increased overlap. The smaller sample size correlations
remained fairly stable as overlap increased. Based on this finding and
the results of the 1PL sample size analyses, the major axis linking of
the 1PL estimates appeared to be adequate for sample sizes as small as
100 and for levels of overlap as low as five. However, in a previous
study (Reckase, 1977) it was found that a sample size of 300-400 was
necessary for accurate estimation of the 1PL parameters. A sample of
400 with an overlap of 10 items was recommended by Wright (1977).

Drift

The results of the drift analyses indicated no significant drift
for any case except the 1000 sample case for the five item overlap level.
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The indication is that, although the five item overlap level appeared to
be adequate, there might be some danger of drift at that overlap level.
However, the problem of drift for the 1PL model was minimal even at the
five item overlap level.

Quality of Linking Index

The quality of linking index for the 1PL model appeared to have little
relationship to the actual quality of linking. Significant chi-squares
were obtained even for the conditions for which correlations of _999 were
obtained. Therefore, this index was discarded and not considered further.

Three-Parameter Logistic Model

The results obtained for the 3PL model were not consistent across the
three item parameters that were estimated, nor were they the same for the
two estimation procedures. Therefore, the results for the 3PL model will be
discussed for one item parameter at a time. For each procedure the results
will be discussed for each level of overlap as well as for both the ANCILLES
and LOGIST estimate. Also, for each procedure the drift that occurred in
the estimates will be discussed.

In the analysis of the sample size requirements for the procedures
using the 3PL model, one factor that was considered was the stability of
the correlations. However, it should be pointed out that the stability
of the correlations was used to determine whether larger sample sizes
would improve the correlations. Stability was not an indication of the

quality of linking, since a correlation could easily become stable at a
low value.

Discrimination Values

Major Axis Method For the five item overlap level the correlations
for major axis 1inking of the a-values using LOGIST estimates never attained
stability. The correlations increased as sample size increased from 100
to 300, but did not significantly change as sample size increased from 300
to 500. When sample size increased to 1000 the correlation actually de-
reased, and then jumped dramatically when sample size was increased to
2000. These results seem to indicate that for overlap levels as low as

five, a minimum sample size of 2000 is necessary for major axis linking
of LOGIST a-values.

When ANCILLES a-values were used for major axis linking at the five
item overlap level the results were not much different. The correlations
never decreased as sample size increased, as was the case with the LOGIST
estimates, but they also never stabilized at a single value. As was the
case with the major axis linking of LOGIST a-values, the linking of ANCILLES
a-values using the major axis method seemed to require a minimum sample
size of 2000.

When overlap was increased to 15 items, the correlations reported for
the major axis linking of the ANCILLES a-values increased at every sam-
ple size, but even with the increased number of common items the minimum
sample size required was still 2000, When LOGIST a-values were used the
correlations reported for the major axis method did not increase as over-
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tap increased from five to 15, except for the 2000 sample size case.
Again, a sample size of 2000 seemed to be required for the major axis
metnod.

When overlap was increased to 15 items, the correlations reported
for the major axis linking of the ANCILLES a-values increased at every
sample size, but even with the increased number of common items the mini-
mum sample size required was still 2000. When LOGIST a-values were used
the correlations reported for the major axis method did not increase
as overlap increased from five to 15, except for the 2000 sample size
case. Again, a sampie size of 2000 appeared to be required for the major
axis method.

For the 25 item overlap level the correlations reported for the
major axis method were higher than for the 15 item overlap level. How-
ever, as sample size increased the correlations continued to increase
for both the ANCILLES and LOGIST a-values. Once again the results in-
dicated that a sample size of 2000 should be used for major axis linking.
However, it should be pointed out that when there were 25 common items
the correlations obtained for the 1000 sample size were about the same
magnitude as the correlations obtained for the 2000 sample size at the
five item overlap level, indicating that use of an overlap level as
great as 25 items cut in half the sample size required to obtain a quality
of linking equal to the quality of linking at the five item overlap level.

There were few instances of significant drift encountered during
the linking of the a-values using the major axis method. When ANCILLES
a-values were used there were no instances of drift. When LOGIST a-
values were used drift occurred for the 1000 sample -ize five item
overlap case and the 300 sample size 15 item overla, se. No drift
was found for the 25 item overlap level. Thus, as overlap increased,
drift occurred for increasingly smaller sample sizes, and with the 25
item overlap level did not occur at all.

Least Squares Method In most cases the use of outlier deletion did
not significantly alter the results of the least squares linking of the
LOGIST a-values. Therefore, in the discussion of the results no distinc-
tion wiTl be made between the least squares and least squares with out-
lier deletion methods except in those few instances where there was a
difference. For the linking of a-values there were no significant dif-
ferences between those two methods.

At every overlap level, for every sample size, the correlations
obtained for the least squares linking of LOGIST a-values were as high
or higher than the correlations obtained using ANCILLES a-values. At no
sample size did either set of correlations level off. Rather, they
continued to increase with increased sample, indicating that the best
sample size for this procedure was 2000, regardless of overlap or whether
ANCILLES or LOGIST a-values were used. For all three of the overlap
levels the least squares method using LOGIST a-values yielded correla-
tions much higher than those obtained using ANCILLES a-values when sam-
ple sizes of 100, 300, and 2000 were used. For the 500 and 1000 sample
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sizes therewasn't much difference between the correlations yielded by
the two sets of estimates. For the five and 15 item overlap levels the
LOGIST estimates yielded correlations for the 1000 sample size that were
comparable to the correlations yielded by the ANCILLES estimates for the
2000 sample size. It appears, then, that for least squares linking of
a-values using large samples LOGIST a-value estimates yielded better re-
sults than ANCILLES a-values.

As was the case with the major-axis method, for the least squares
linking of ANCILLES a-values there were no incidents of drift. When
LOGIST a-values were used the only drift that occurred was for the 500
sample size 15 item overlap level. When outliers were deleted, drift
occurred for the 500 sample size five item overlap case and for the 1000
sample size five item overlap case.

Maximum Likelihood Method For all three overlap levels the corre-
lations obtained for the maximum 1ikelihood method increased with increased
sample size. However, for the 25 item overlap level the correlation for
the 1000 sample size was as high as the 2000 sample size correlation for
the five and 15 item overlap levels, indicating perhaps that for overlap
Tevels as high as 25 a sample size of 1000 is adequate for the maximum
likelihood Tinking procedure. Drift was not a consideration for the maxi-
mum Tikelihood method, due to the simultaneous calibration of the tests.

Difficulty Values

Major Axis Method The sample size needed to obtain stable correla-
tions for major axis Tinking of b-values was smaller than the sample
size required for the a-values except for the 100, 300, and 500 sample
size cases for the five item overlap level. For the five item overlap
level the correlations for the major axis method using ANCILLES esti-
mates became relatively stable when the sample size reached 300, al-
though some improvement in the correlations did occur as sample size
increased beyond 300. When LOGIST estimates were used the correlations
did not become stable, indicating that when LOGIST estimates were used
for major axis linking of b-values a sample size of 2000 or more seemed
to be required. -

The correlations obtained for the major axis procedure for the 15
item overlap level were higher than for the five item overlap level,
but the sample size requirements were the same. A sample size of 300
still seemed to be required when ANCILLES b-values were used, while the
requirement when LOGIST b-values were used was 2000.

For the 25 item overlap level the results for the ANCILLES b-values
were much the same as for the 15 item overlap, with a sample size require-
ment of 300 indicated. For the LOGIST b-values the results were different
than the 15 item overlap results. For the LOGIST b-values at the 15 item
overlap level a sample size of 2000 was needed, but for the 25 item overlap
a sample size of only 300 was required. For the major-axis linking of
b-values there was no drift.
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Least Squares Method As was the case with the a-values, for the b-
values there was no practical difference between the least squares method
and the least squares method with outlier deletion. Therefore, in this
discussion there will be no distinction made between these two procedures.
References to the least squares method using LOGIST estimates will refer
to both the least squares and the least squares with outlier deletion
methods .

The correlations for the five item overlap level obtained for the
least squares method using ANCILLES b-values become relatively stable
when samples as great as 300 were used. When LOGIST b-values were used
the correlations obtained for the five item overlap level did not stabilize.
The results using the LOGIST b-values indicated that a sample size of
2000 was needed.

The results for the least squares linking of b-values with 15 common
items were much the same as the results for the five item overlap level.
For ANCILLES b-values 300 cases seemed sufficient, while for the LOGIST
b-values a sample size of 2000 was required.

For the 25 item overlap level the results for the ANCILLES b-values
were the same as for the other overlap levels. A sample size of 300
appeared to be adequate. A sample size of 300 also appeared to be ade-
quate for the LOGIST b-values. For the least squares linking of b-values
there was no drift, nor was there drift when outliers were deleted.

Maximum Likelihood Method For the maximum 1ikelihood linking of
LOGIST b-values the correlations obtained for the five item overlap
level did not stabilize, and a sample size requirement of 2000 was indi-
cated. When overlap 1ncreased to 15 items the correlations became rela-
tively stable when sample size increased beyond 100. A sample size of 300
was adequate for this procedure for the 15 item overlap level. The re-
sults were the same for the 25 item overlap level, and a sample siz2 re-
quirement of 300 was again indicated. As was stated previously, drift
was not a consideration when linking was performed using the maximum
likelihood method.

Comparisons of the 3PL Methods

The comparisons of the 3PL methods will be made in the following
manner, First, the combination of sample size, overlap, calibration pro-
cedure, and linking procedure that produced the best results will be
selected for each parameter. Then the best combination for small samples
and low overlap levels will be selected for each parameter.

Discrimination For the linking of a-values the best combination
was the 25 Ttem overlap level for the 2000 sample case using the LOGIST
a- -values with any of the methods. That is, with 2000 cases and 25 items

in common, it didn't matter which method was used as long as LOGIST a-
values were used.
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For lower levels of overlap the results were the same, except that
at the five item overlap level the major axis method was not as good as
the others. For small sample sizes (100 to 300) the pattern was the same
with the exception that the 25 item overlap 100 sample case using the
maximum 1ikelihood method was not as good as the others. O0f course, the
actual correlations obtained for the 100 and 300 sample sizes were much
smaller than those obtained at the 2000 sample size and appeared to be
inadequate.

Difficulty For the linking of b-values the best combination was the
same as for the a-values, which was any of the methods using LOGIST b-
vea.ues with a sample of 2000 and 25 items in common.

For the 15 item overlap level the best combination was the same as
for the 25 item overlap, except that the maximum likelihood method was
not as good as the others. For the five item overlap level the best
combination was the 2000 sample case for the least squares method with
outlier deletion using LOGIST b-values.

For small sample sizes (100-300) the best results were obtained
using the major axis and least squares methods with either the ANCILLES
or LOGIST b-value estimates and 25 items in common, Again, the 100 and
300 sample size correlations were smaller than those obtained for the
2000 sample size and were probably inadequate.

Comparison of ANCILLES and LOGIST Estimates

This study was not designed to compare these two calibration pro-
cedures per se, but was to compare the linked parameter estimates ob-
tained using these two procedures. Of course, the quality of the linking
does depend on the quality of the parameter estimates.

It is clear from the resuits of this study that for the linking of
a-values larger sample sizes are required when using ANCILLES than when
using LOGIST, especially for the lower levels of overlap. For b-values,
however, the reverse is true. Larger sample sizes are required for link-
ing LOGIST b-values than for linking ANCILLES b-values.

Although c-values are not linked, they are averaged, and it is impor-

tant to consider the quality of c-values used for an item pool. Even if
good estimates of the a- and b-values are obtained from the linking pro-
cedure, poor c-values may lower the quality of the item pool. It is

clear from this study that the ANCILLES program yields considerably better

c-value correlations than the LOGIST program. This result, however, is
probably an artifact of the restrictions placed on the c-values by LOGIST

One last comment can be made regarding these two estimation proce-
dures. The LOGIST estimates tended to be mildly subject to drift during
Tinking of a-values, while the ANCILLES estimates were not.
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Comparison of the Results for the 1PL and 3PL Models

The Tinking of b-values using the 1PL model was clearly superior to
the Tinking of b-values using the 3PL model, except for the 2000 sample
case. For the five item overlap level a samp1e of 2000 was needed be-
fore the correlations for the 3PL b-values were as high as the correla-
tion for the 1PL b-values for the 100 sample case. The difference in
sample size requirements became smaller as overlap increased, but it is
clear that linking 3PL b-values requires greater sample sizes than the
linking of 1PL b-values.

Because the 1PL model does not have discrimination and guessing
parameters, the linking of a-values and c-values using the two models
cannot be compared. If discrimination and guessing parameters are needed
or desired, of course, it is clear that the linking of the estimates of
these parameters must be done using the 3PL model. If only b-values are
needed, then the linking of the 1PL b-values yields superior results.

Summary and Conclusions

The purpose of this study was to investigate the properties of
available procedures for linking item parameter estimates. The proper-

ties investigated included sample size requirements, overlap requirements,

and drift. From the analyses of these properties reported, the follow-
ing conclusions were reached.

When large sample sizes were employed, the use of LOGIST a-values
with any of the procedures appeared to yie]d adequate results. The same
was true for the linking of b-values using the 3PL model. The best com-
bination for linking b-values was the use of LOGIST b-values with any of
the 1inking procedures. When small sample sizes were used for the link-
ing of a-values the best results were obtained using the major axis and
Teast square procedures with either the ANCILLES or LOGIST a-values.
Again, the results were the same for small sample size "inking of b- _
values. The linking results using the small sample sizes were not as
satisfactory as the results obtained using large sample sizes. The
small sample sizes appeared to be inadequate for both a-value and b- ,
value linking using the 3PL model. For the Jinking of ~1PL b va]ues a
sample size of 100 appeared adequate.

Level of overlap did not seriously affect the results of linking
for any of the procedures. However, it did appear that five items
probably was not adequate. For the 15 and 25 item overlaps the results
were quite similar, indicating that 15 items is probably sufficient
overlap. With either 15 or 25 item overlap levels the results were
as reported above., For the five item overlap the results were the
same except the major axis method tended to yield less satisfactory
results.

Based on the above conclusions the following recommendations were
made. For best results an overlap of 15 items is probably best. An
overlap of 25 items yields adequate results, but is probably impractical
in many applications. At the 15 item overlap level a sample size of
2000 is probably needed for stable linking of a- and b-values when the
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3PL model is used, although for LOGIST a-values 1000 is perhaps suffi-
cient, For the 3PL model the LOGIST program appears to yield the best
overall results.

With a sample size of 2000 any of the procedures will
; probably yield adequate results.

For the 1PL procedure a sample size
of 100 to 300 will probably yield adequate results, assuming accurate
parameter estimates.
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